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Preface These are notes of my three lectures for graduate students and a
colloquium talk at the Department of Statistics, University of North Carolina,
Chapel Hill, in April 1989.

Sections 1-4 are based on those three lectures with somewhat more
attention devoted to the space of generalized white noise functionals. What is
described here are mostly survey articles, though some state-of-the-art results

are added, while Section 5 involves a new approach to the study of Gaussian

- . “ «

random fields. This topic is exactly whag,l/wishéd to propose at the
colloquium. What is going to be presented here is, of course, far from a
general theory: however it isfour hope that this attempt would be the very
first step towards the study of Gaussian random fields using variational
calculus.

I am grateful to the Center for Stochastic Processes, in particular, to
Professor G. Kallianpur who has given me this opportunity to give lectures and

has suggested to write these notes.
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§1. White noise

We start with a Gel'fand triple

Eci®@®y) cE®, 4 1.

where E is a real nuclear space of E. These spaces E and E* are linked by the
canonical bilinear form < , >.

Given a characteristic functional
2 . 2,.d
(1.1) C(F) = exp[-4IENT]. € € E, Il II: L"(R )-norm.
We can form a p-obability measure u on E* such that

(1.2) C(§) = IE*eXP[i <x, € 2] du(x).

The probability measure u is viewed as the probability distribution of
white noise W(u), u € R, which is a stationary generalized Gaussian random
field with independent values at every point u € Rd. Thus, the measure space
(E*,u) is a realization of white noise and p-almost all x in E" is thought of
as a sample function. We call the probability measure space white noise and u

is said to be the measure of white noise.

Remark 1. As for the story behind the definition of white noise the reader
is recommended to see [2, Chapter 1].

Let £ € E be fixed. Then, a linear functional <x,f> of x € E* is a random
variables on (E*.u). If {En) is an orthonormal system in L2(Rd). then (<x.§n>)
forms a system of independent identically distributed (i.i.d.) random

variables, of course standard Gaussian in distribution.

Remark 2. Let (<x.§n>) be the system given above. Then, ((x.§n>2} is
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also an i.i.d. system with common unit mean value. We can therefore appeal to

the strong law of large numbers to obtain

(1.3)

2|

N 2
X, EDDT — 1, a.e.
1 n

Since {(x,§n>} looks like a coordinate system for x in E*. the formula (1.3)
tells us that p-almost all x is sitting on, as it were, an infinite dimensional
sphere with radius Vo. Such an intuitive observation leads us to introduce an
infinite dimensional rotation group and even to discuss so-to-speak harmonic
analysis arising from the rotation group.

We now come to the complex Hilbert space
2 2, %
(L™) = L%(E ,u).

The Wiener-It6 decomposition of (L2). which is well known, may be obtained in
the following manner. Let (§n) be a complete orthonormal system (CONS) in
L2(R') such that En € E for every n. Then, it is proved that the set of the

Fourier-Hermite polynomials of the form

(1.4) an(<x.§k>/@). (finite product),

Cn )

"k %
- ) -
C(nk} = (Hk nk.2 Y . Enk = degree,
forms a CONS in (L2). The subset of those polynomials of degree n spans a
closed subspace 1n of (L2). Obviously. ﬂn‘s are mutually orthogonal. We can

further prove

Theorem 1.1 (Wiener-I1td) The space (L2) admits a direct sum decomposition

in terms of ¥ :
n
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2 ©
(1.5) (L) =8 % .

A member of ﬂn is called a multiple Wiener integral of degree n. The
space (L2) with this decomposition is often called a Fock space.

We now introduce the J-transform
(1.6) (90)(6) = b1, OT(x)u(x).  9(x) € (?).

The vector space ¥ = {Jp: ¢ € (L2)} can be topologized so as to be a
reproducing kernel Hilbert space with kernel C(f-n), (£.n) € ExE, where C is

the characteristic functional given by (1.1). We can prove
Theorem 1.2. The J-transform gives an isomorphism

L3 = 7.
A visualized expression of an ﬂn—functional can be obtained from the

following theorem.

(=%

Theorem 1.3 (Integral representation) For ¢(x) in *n' we have

(1.7) (Fo)(E) = iC(E)U(E).

where U is expressed in the form

(1.8) UCE) = § Fu)e™(w)d™,  F e L2@%) = L2@r)™®

IRn

with the properties that

F (—> L2(Rn). bijective

lloll = vn! IFN )
{S}m“)




This result may be expressed briefly as

* :/féan.n!dnu). and as .
(1.8) .
(%) = 817" n'd").

n=0 .

The functional U(§) in (1.8) may be obtained as the Y-transform:

(1.9) (#9)(§) = U(E) = J o(x+§)du(x).
E*

We then provide a powerful tool for our analysis, namely an infinite

dimensional rotation group (cf. Remark 2). Set

O(E) = {g: i) g is a linear homeomorphism of E. and

ii) HgENl = NIEN for any § € E}. )

Obviously, O(E) forms a group under the usual product which we may even
topologize, say by the compact-open topology, so that it is a topological

group.

Definition. The group O(E) is called a rotation group of E, or often

called an infinite dimensional rotation group and denoted by O(»), when E need

not be specified.
Associated with each g is the adjoint g* which is defined in the usual

manner :

g x.E> = (x.gf>, x€E, F€EE.
Theorem 1.4. For any g in O(E)

(1.10) U=

holds. -

Proof. The characteristic functional of the measure g*u is C(g-1§) which




is in agreement with the characteristic functional C(f) of p. This ensures

(1.10).

We now pause to explain some aspects of our infinite dimensional calculus

in order to describe the idea of our approach.

I. We have been motivated by P. Lévy's functional analysis (see [1]) where he
has discussed the analysis of functionals on L2([O,1]). The attempt to
introduce a uniform measure on the unit ball never succeeds, as he knew and we
now know, but he has introduced the notion of "la valeur moyenne" of
functionals on the unit ball while we have been led to use the (real, countably
additive) measure not on L2([O.1]) but on the space E' of generalized
functions. Still we can find lots of ideas from Lévy's results when we proceed

to work out a calculus of white noise functionals.

I1. Since we have the rotation group acting on an "infinite dimensional
sphere”, we may see a counterpart of the analysis on finite dimensional
spheres. The unitary representation theory of Lie groups has given us valuable
suggestions. The approach in this line is quite successful. In addition, we
can see several profound and in fact essentially infinite dimensional
properties of white noise functionals through subgroups of O(E) that can not be
approximated by finite dimensional rotations. This will be seen in Section 3.
For the details of what has been discussed in this section, we refer to

the book [3].

82. Generalized functionals.

We are going to carry out the so-called causal calculus, where the
development of time t is involved explicitly and where {x(t): t € Rl} for x in

E is taken to be the system of variables of a white noise functional. It is,




therefore, quite reasonable to introduce some classes of generalized
functionals which involve, e.g., like polynomials in x(t)’'s, exponential
functions and even delta-functions of those variables. We are going to
introduce the following two classes of generalized white noise functionals,
each of which plays its own role in our calculus. Several variants may, of
course, be considered depending on the purposes. However we shall introduce

only generic cases.

[1] Spaces (L%)*
We start with the Fock space established in (1.5). Take a Sobolev space
%n, n 2n,.n %n,n /”5‘ n
H (R} of order a_ >0. SetH (R')=H (R)NL°(R"). Then the isomorphism
2h,.n (n) (-n)
(1.8) can be restricted to H (R') to define Xn C *n' The dual space ﬂn

of Xﬁn) can be obtained and we establish the following diagram:

*ﬁ—n) - H—n+1)/2(Rn)
U
* =/L>\
n
U
jll(ln) Qn+1)/2 n (up to const. vn! )
Set
24+ _ _ . (n) 2 2 _ 2
(L) = {¢ = i Pt Py € X Ecn H¢ﬂn = lloli < o}
where {cn} is an increasing sequence of positive numbers, and where Il Hn is the
Xgn)-norm. The It i appearing above is a Hilbertian norm, with respect to

which (L2)+ becomes a Hilbert space.

Let (Lz)— be the dual space of (L2)+. A member of (L2)_'is called a

generalized white noise functional. Because of the construction of (L2)+, we

of ten use the following notation:




(2.1) (L= 8c! yg'“).

and the canonical bilinear form which connects (L2)+ and (L2)— is denoted by

<, >u. If no confusion occurs, we denote it simply as < , >.

Remark 1. One may ask why the choice of a = (n+1)/2 is most acceptable.
There are many reasons. For one thing, the kernel function of the integral
representation of ﬂn—functional has a continuous version and its restriction to
a lower, say d-dimensional space is again in the Sobolev space with the order
satisfying the same relation to the dimension: (d+1)/2. For another reason, we
can claim that Hermite polynomials in x(t)’s of degree n are living in the

space ﬂn.

Examples of an (L2)” - functional.
10) Hermite polynomial in x(t) of degree n will be denoted by :x(t)n:. The

polynomial as well as an integral of the form
FE(u): x(u)™ du, £ € L2(R).

in H—(n+1)/2(Rn).

belong to ¥ , since 6®n is
n t
20) An exponential function formally given by
¢ (x) = exp[c [ (t)zdt] c €C Rec (< L T interval
c ™ - 3 ’
has no meaning, but applying the multiplicative renormalization such as
¢c(x) = N exp[c fo(t)zdt]. N normalizing factor

is a member of (L2)—. Its ¥-transform is given by

exp[: IT §(t)2dt]. c = c/(1-2c).
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30) A normal functional (named by P. Lévy) is an (L2)— - functional with the

#-transform expres .ble as

n n
1 k
U(E) = =2 I"'IF{n.}(ul ..... uk)f(ul) o §(uk) du,...dy .
{n} J
J
is also a member of (L2)—'with suitable assumptions on F{n }
J
40) (L2)—‘functionals related to the delta function.
Donsker’'s delta function
6, (%) = 5, (y-B(t.x)).
where B(t,x) is a Brownian motion formed on (E*,u). (L2)— - functional given

by Kallianpur and Kuo.
f o B(t,x) = Jf(y)d(y - B(t,x))dy,

[II] Spaces (S) and (S)*.

We use the second quantization technique to introduce the test functional
space (S). There is a somewhat general theory (see the book [C]). where we
start with a o-Hilbert nuclear space and lift up *he structure to Fock spaces.
However, to concretize the story we shall form the space by using concrete well
known spaces and operators. The basic nuclear space is now taken to be the

Schwartz space Y(Rl). which is the core in terms of Glimm—Jaffe. Let A be

given by

(2.1) A=- —S tu o+ 1
du

which is positive and self-adjoint. Its domain is taken to be Y(Rl). Then,

there is the second quantized operator




(2.2) r(a) = & A%

n

acting on the Fock space formed from L2(R1) as we did in (1.5). It holds that

r(a)’ =r(aP), pe z, .

By the isomorphism (1.8) we can see that the F(A)p goes to an operator acting
on (L2). For simplicity we shall denote this operator on (L2) by the same
symbol I'(A)P.

Now set

- %
(8,) = 3(r(A”))

and denote by (S—p) the dual space of (Sp). Then we obtain a chain of the

spaces
2
€ (S, C(S)c..c(L)C..c(s )C(S__))cC...

Let I ”k be the norm in the Hilbert space (S Then, {ll Hk; k€Z} is

k)'
compatible in the sense of Gel'fand-Vilenkin. Now recall that the Hermite
functions (products of Hermite polynomials and Gaussian kernel with normalizing

constant) Ek are the eigenfunctions of the operator A:

(2.3) AE, = (2k+2)E, .

With these properties in mind we can easily prove

Proposition 2.1. i) The injection

Sya) = (§)

is of Hilbert-Schmidt type.

Set

(8) =N (S))
p P
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and let the projective limit topology be provided for (S).

Proposition 2.2

i) The space (S) is nuclear.

ii) (S) is an algebra.

iii) (S) is dense in (L2).

The dual (S)* of (S) is therefore given by

%
()7 = U (s.y)

A member of (S)* is also called a generalized white noise functional.

Examples. 1) An exponential function of the form exp[c<x.§>], c € C are
members of (S).

2) ;c(x) in Example 2) in [I] with T = R belongs to (S)*.

We are now ready to discuss the causal calculus on the space of
generalized white noise functionals.

First we introduce differential operators. Recall that the ¥-transform
which carries (L2)_—functionals to functionals of §., denoted by U(f). Assume
that the functional U(f) associated with (L) -functional ¢(x) has Fréchet
(functional) derivative denoted by EE%%T . If the derivative is a U-functional

of some (L2)_—functional denoted by ¢£(x). then ¢ is differentiable and we

write

(2.4) #.(x) = 3 o(x).

Formally we write

: -1 68U
(2.4) 3. =¥ sy teER

Remark. Since {x{(t); t € R} is taken to be the system of variables of
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. . . S . 3
white noise functionals, it is reasonable to introduce an operator 5;(?7 .
Indeed, the d_ just defined above is a realization of —42——.

t ax(t)
We note that the domain of at includes (L)+. (S). and the normal
functionals with continuous kernels.
Example. Let ¢(x) be a normal functional with the U-functional of the

form

™ "k
(2.5) U(E) = ko(ul,...,uk)E(ul) ...§(uk) dul...duk .

R
where F is continuous. Then, ¢ is differentiable and the derivative at¢ has

U-functional of the form

nj—l j n, n
2 n E(t) J F(....t o )E(u)) ..j..§(uk) du..j..du .
-
J lRk—l

We have tacitly proved that the assertion mentioned above that normal

functionals are in the domain @(at).

The following assertion is easily proved by applying at to the exponential

functions exp[c<x.§>] that has been observed in the Example 10) of [II].

Proposition 2.3. The differential operator at is a derivation.

As was introduced in [8], we can define the adjoint operator 6: for Bt in

such a way that
9.8 £> = (8@, >
‘P- t u - t‘P- u

where f is a test functional and ¢ is a generalized functional.

Theorem 2.1. 1) at is an annihilation operator. In particular

3 : *(n) __,J{(_n-l)'
t n n-
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and at is a continuous map from (S) into itself.

. * . . .
ii) at is a creation operator, in particular

* (-n) (n-1)
at. J(n —-).'lfm_l

* »*
and at is a continuous map from (S) into itself.

Proof. We use the integral representation and observe that for the kernel

F of the ﬂgn)—functional
un) - nF(ul.....un_l,t)
by at. While, for ﬂﬁ_n)—functional

G(ul.....un) — (6 @ G)(ul.....un+1).

Note that G is a generalized function.

Proposition 2.4. The canonical commutation relation holds:

[at,a:] = 5(t-s)

* 3
[at'as] = [at'as

] =0.
Multiplication by x(t) is well-defined in such a way that

¢
(2.6) x(t)e =3, + 3, .

%
By using the creation operators at. we define a stochastic integral in the

generalized sense. For f in L2(Rt) we set
3 (f) = ff(u)a:du.

It is an operator acting on (L2)-. Let ¢ be a member of (L2)—. Then
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(2.7) 3% (f)e = ff(u)c'i:q)du

is a generalized stochastic integral.
Note that if ¢ = 1, then 6*(f)1 is nothing but a Wiener integral. If ou

is a functional depending on u and if it is non-anticipating, then the integral
2

(2.8) ff(u)auw du

is also defined and it is in agreement with the Ité integral.

Theorem 2.2. Let ¢ be an (L2)-~functiona1. Assume that the sequence {cn)

defining (L2)_ satisfies the inequality

2 2
C 41 > (n+1)cn.

Then, ¢ is in the domain of 6*(f) and 6?(f)¢ is again a member of (Lz)—.
Proof is obtained by evaluating the Sobolev norms of the tensor products

of f and kernels of ﬂﬁ—n)—components. (See [6].)

§3. Rotation group and harmonic analysis.

As was explained in Section 1, we expect that the infinite dimensional
rotation group would shed light on our white noise analysis, in particular on
the causal calculus on the space of generalized white noise functionals.

The group O(E) itself is quite big; indeed, it is neither compact nor
locally compact. We shall therefore take suitable subgroups and observe

relations, like hidden symmetry, with the corresponding calculus.

[I] Finite dimensional rotations.
Take a finite, say n, dimensional subspace En of E. If the restriction of
a rotation g € O(E) to Ei is the identity, then g is viewed as an n-dimensional

rotation. Hence, it is easy to see that O(E) has a subgroup Gn isomorphic to
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SO(n). To make the discussion consistent in n, we may start with a choice of a
CONS. {fn} and form n-dimensional subspace En which is increasing in n. In
concordance with En is a sequence of subgroups Gn of O(E) isomorphic to SO(n).

The inductive limit

«©

(3.1) }Jim G_ = G
n

involves finite dimensional rotations based on {fn}.
The infinite dimensional Laplace-Beltrami operator A can be characterized

in terms of G_, and using (fn} it has the following expression:

(3.2) A =3 [ 2 X, ED 9—; ].

. 2, . .
As is well known, the subspace ﬂn of (L7) is the eigenspace of A
belonging to the eigenvalue -n. Irreducible unitary representation of G, is
given on the space ﬂn.

»*
The operator A can be expressed in terms of the at and at.

Proposition 3.1. We have

]
(3-3) A, = -J8. 8, dt.

Proof. If we apply -fa:at dt to any ¢ in jn' we must have -ny. So the

operator can be extended to a self-adjoint operator with domain (4. ).

Analogous to the case of two dimensional rotation, multiplication and the
differential operators at can define the infinitesimal rotation in the

following manner: Noting (2.5), we set

~
[}

] %
(9, +8,)8, - (3, +3,)3,

»* %
atas - asat,
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which is defined to be the infinitesimal generator of the rotation. The

generators Pe g s,t € R, characterize the operator AOo in the following manner.

Set
(3.4) B = JJG(u.v)33  dudv
. -3/2,,2 . . . .
where G(u,v) is an ¥ (R7)-function. It is easy to see that B is defined on

(L2)+ and is symmetric.

Theorem 3.1. If the operator given by (3.4) commutes with all generators
T g St € R, then B is the infinite dimensional Laplace-Beltrami operator up

to a constant.

Proof. The commutator [B,~, ] =B~ -« sB is easily computed and is
given by

% * * *
ast(u.t)audu - atf(u,s)audu = ath(s.v)avdv - BSIC(t,v)avdv.

Applying the above operators to exponential functions with the ¥-transform

exp[<f.E>]. we obtain
f(v)JG(t,u)E(u)dt - f(u)JG(t.v)E(t)dt = E(u)JG(v,.s)f(s)ds - E(v)JG(u,s)f(s)ds.

In the above expression, f and § can be taken arbitrary, so that we set f = §

to obtain

f(v)JG(u,s)f(s)ds = f(u)JG(v.s)f(s)ds.

This implies that the generalized function G(u,v) has to of the form (3.3).

We have now established the following diagram
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nn\
7

Figure 1.

(Fock space)

A

[+ ]

[II] The Lévy group.

Again we fix a CONS {§n}. Let 7 be an automorphism of the positive
integers. Then, a transformation g acting on E is defined in such a way that
for
§=3af

gﬂ§ = zanfr(n) ’

Let T be the collection of automorphisms w such that

(%) lim %-#{n {N;w(n) >N} =0

N0

holds, where #( ) means the cardinal number of integers in the { }. Now set
¢ = {gx; T €I, g € O(E)}.

Obviously ¢ forms a subgroup of O(E), and it is called the Lévy group (see [1],
Part III.).

On the other hand, Lévy has defined the following Laplacian:

Q
[\

=2Z)—

N
(3.5) A = lim &3
N-wo 1

g€

SN

We call AL the Lévy laplacian.

As we did in the case of the infinite dimensional Laplace-Bel trami

operator, we are given the following formal expression
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(3.6) A = 5(3)%(d0)%  (H.-H. Kuo).

We can, of course, give a good interpretation to the above formula. However,

for computational convenience we define the Lévy Laplacian as follows:

-1 82

5§(t)

¥ dt.

(3.7) A, = [ 5

Remark 1. Note that there are two different kinds of second order

2 2
functional derivatives; one is 33??7%?(37 and the other is 5§ft)2 . For the

definition of AL we only use the second one. The first one leads to the
Volterra Laplacian.

The following theorem is straightforward.

Theorem 3.2. i) The operator AL commutes with the Lévy group.
ii) The domain of AL involves normal functionals.

iii) The operator AL annihilates (L2)—functionals.

Remark 2. Two Laplacians A and AL share their roles: the former governs
the harmonic analysis arising from G, while the latter acts effectively on the

space of generalized functionals having a close connection with the Lévy group.

[III] Whiskers.
We then come to the third subgroup of O(E). A one-parameter subgroup {gt)
of O(E) is called a whisker if each g, comes from a diffeomorphism of the

parameter set R = R' U {®»}. It is defined in such a way that

(3.8) (2,6)(u) = € (W)W ()]

with a suitable choice of a family (wt(u). —o ¢ t ¢ ©} of functions of u
satisfying

(3.9) ¥
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Such a g, can not, in general, be approximated by finite dimensional rotations
under the usual topology.
The most important and in fact the simplest example of a whisker is the

shift {St; t € Rl} defined by

(3.10) (S£)(u) = E(u-1t). rter.

Recalling that u is the time variable we see that the shift stands for
propagation of time.

It is known (see [3] Chapter 5) that there are two other simple and
important whiskers and that together with the shift they form a three
dimensional subgroup GP of O(E) which is isomorphic to the group PSL(2,R). The
group GP is particularly interesting in probability theory: for one think CP
describes Lévy’s projective invariance of Brownian motion. Note that the basic

nuclear space should be taken suitably in this case.

84, Applications to Physics.

Needless to say., there are many applications of white noise analysis, but
we are going to explain here only two applications to quantum dynamics.

1). Feynman integrals

We shall give a reformulation of the path integral for the propagator in
quantum mechanics in terms of generalized white noise functionals, where the
average over possible paths is understood as an expectation over the paths
interfered with by Brownian motion. In this sense, our method may be
considered to be in line with the idea proposed by Feynman in 1948. Moreover
it may be worthwhile to mention that we use generalized functionals instead of
a limiting procedure.

Let a Lagrangian L be given:

(4.1) L(7.¥) = 5 my° - V(y).
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where V(y) is assumed to be smooth encugh, non-negative and to grow at most of
quadratic order. As is well known, the quantum mechanical transition
amplitudes can be thought of as an average over fluctuating paths weighted with

an exponential of the classical action

(4.2) A(y) = I L(3.5). y(s))ds.

We are now in a position to choose possible trajectories. We propose that
y consists of a sure path Yo determined uniquely by classical mechanics and a

Brownian fluctuation denoted by B(s). Hence, y has to be of the form
%
(4.3) y(s) = yo(s) + (B/m)” B(s) , 0<¢s (.

The choice of the constant in front of B(s) is suggested by the dimension

calculus. With this expression of y the propatator is given by the formula
im .t - 2 1 .t » 2
(4.4) C(yl.yz.t) = E{¥ exp[€-§ o y(s)“ds + i-fo B(s)“ds]
i ot
x exp[- & S5 V(y(s))ds]a(y(t)-v,)} -

In this expression the action is certainly involved, and in addition we include
the second integral so that the measure p of white noise is made flat. The
delta function serves to pin the trajectories to y at time t (concerning the
use of this factor, see [7]). Finally, it is noted that the factor X is
necessary to have multiplicative renormalization, necessitated by the term
involving ﬁ(s)2

Examples like free particle, harmonic oscillator and some other cases of
known potentials allow us to find actual formulae to see that there is nice
agreement with the standard results.

Our idea to reformulate the Feynman integral can be generalized to various

cases. Very fruitful results have been obtained by de Falco and D.C.
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Khandekar.

2) Dirichlet forms

A brief discussion of the application to a representation of the free
massive relativistic scalar boson field is going to be presented.

First we provide an important notion. Set

(S)> ={(F€(S); F(x) 20 a.e.}
and define

(8); = { » € (8)%: <p.F> 20  for every F € (S), }.

»*

A functional in (S)> is called a positive generalized functional. Note that a
%

member of (S)> is in general renormalized, so that positivity is not a simple

notion (See [10]).

Theorem 4.1. (Y. Yokoi) For ¢ in (S): there exists uniquely a probability

%
measure v¢ on E such that

(4.5) WP, = IE*;(x)duw(x), F e (S).

where F(x) is a continuous version of F.

Define the gradient operator v:

(VF) = (8,F: t € R')

and denote

|vF|2 = rle F|? at.

Introduce the Hilbert space (22) = (L2)®L2(R1).

Proposition 4.1. i) v maps (S) into (92).

ii) |vF|2 is in (S) for any F € (S). With this background a bilinear form is
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introduced:
(4.6) E(F.F) = <p, ¥F » v0> = J(¥F « vG)(x)e(x)du(x), ¢ € (S)’; ,

where (vF + vG)(x) = f(atf)(x)(atc)(x)dc.
We are now interested in the closability of §.

The following theorem is our main result.

Theorem 4.2. If ¢ € (S): is such that 65¢ = B(s)y for every s with
JB(s)n(s)ds € (S) for every n € Q(Rl), then the € is closable.

For proof we use the well known Kato theorem on closability and several
basic properties of the test functional space (S).

Further developments have been made by Albeverio, Potthoff, Rockner,

Streit and the present author.

85. Gaussian random fields

In this section the author wishes to propose a new method of study of
Gaussian random fields using the variational calculus. It is difficult to
describe the whole story including motivations, background and ideas of the
proofs of theorems, however the route of our approach will be illustrated step

by step.

lo) Typical examples

i) The Lévy Brownian motion (1945) {X(t); t € Fd} is a Gaussian system

with EX(t) = O
(5.1) I(t.s) = E{X(t)X(s)} = %(|c| = |s| - |t-s|).

ii) The Ornstein-Uhlenbeck field {Um(t): t € Rd) is a generalized

stationary Gaussian random field with characteristic functional
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2 2

(5.2) Co(E) = exp- 5 J —EE

ax]. € € #’Y
Rd m” + A

2
where § is the Fourier transform of F.

iii) Let {X(t): t € R2) be a Lévy Brownian motion. Set
(5.3) Y(C) = E(X(t)7X(s)., s € C),

where C is a contour in R2 and where t is fixed. Then, we have a random field
{Y(C)} depending on a contour in a plane.

Our aim is to investigate the way of dependency when t changes or when C

moves, deforms or is distorted.

o]
2 ) The Lévy Brownian motion.

Among others the Lévy Brownian motion is a most interesting field. Let us
assume d = 2 to fix the idea. If the parameter t is restricted to a Cm—curve
C. then using the arc length we are given a Gaussian process depending on a
one-dimensional parameter. The most interesting example of C, except for a
straight line, is a circle. We may assume that the circle C is originated from
the origin. We are given a Gaussian process {X(86)}, the canonical

representation (in the Lévy sense) of which is given by

0 g _°t3 . 20, .. .
(5.4) X(8) = IO {sin 8(csc 5 - —5— h(6')) + cos ;h(e )}dB(68'),

) 8,-1 i .
where h(8) = {1 + 7 tan z) (Si Si, 1989, see [11]). This representation

tells us that {X(6)} is a double Markov Gaussian process.

Here is a conjecture: There is no smooth curve C such that a Gaussian
process with parameter set C is a finite order Markov process except the case
of constant curvature.

We then come to conditional expectations as in (5.3). Let C be a circle.
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The values t,x,p,0 and the point p are as in Figure 2.

Figure 2.
Then the conditional expectation

Y(C) = E(X(p)/X(6). 6 € C)

is given by the following formula (also in [11]).

(5.5) Y(C) = fgvf(p.B)X(G)dB.
where
2 2.2
t - 1 t+ 2Vt
[(p.0) = =5+ o (1= 5 Elg =550,
tp

(E: elliptic function.)

Remark. The formula (5.5) gives us lots of suggestions. For instance, the
factor p3 in the first term of [ is une »f the characteristics of the Lévy
Brownian motion. If we know X(8) only on part of C, then f must involve a

generalized function which can be shown by the canonical representation thoery.

(o]
2') White noise with higher dimensional parameter

Start with a Gel’'fand triple

EcL®rY) c £

and introduce white noise measure u on E*. As in Section 1, we form a Hilbert
2 2 (-1) c .

space (L™) = L™(E ,u). Take the subspace ¥, and form ﬂl consisting of

generalized linear functionals of x € E*. The U-functional associated with

Xg-l)-functionals is expressible as
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d+1)/2 pd

(5.6) U(E) = <F.6>, f € g ( ).

With the help of such an expression, one can speak of the support of f. We can
consider only those ﬂg—l)—functionals for which kernels are supported by a
lower dimensional manifold. This means that we can restrict the parameter of

white noise to a manifold in Rd.

40) Random fields depending on C and_ their variations.

0
Let C be a class of C -curves homeomorphic to a circle, and consider a

Gaussian random field {X(C): C € C}
Case 1. This is the simplest case. Set

X(C) = [ f(wX(u)du, f € B/2R%)
(C]

where [C] is the domain with boundary C. Then, the variation is

6X(C) = J f(x)x(s)én(s)ds,
C
which implies
XA(C)(S) = f(s)x(s).

We can therefore recover x(s) where f does not vanish.

Case 2. More generally, we set

X(C) = [ f(C,u)x(u)du.
(C]

Then

6X(C) = [ 6f(C,u)x{u)du + [ £(C,s)x(s)én(s)ds.
(€] C

The two integrals above have different order in the mean square sense. So,
they can be discriminated, i.e; x(s) can be recovered under suitable

assumptions on f.
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Case 3. White noise integral over a curve. We set

Y(C) = § £(C.s)X(s)ds,
C

2
where X is taken to be an ordinary Gaussian random field with parameter set R™.
Then

8Y(C) = J {6f(C.s) - kf(C,s)dén(s)}X(s)ds + [ f(C.s) g— X(s)dn(s)ds
C c n

where k is the curvature. Actual examples can be seen in [12]. Note that the

curvature appears by the variation of the line element ds.

Case 4. The case where C is taken to be the set of plane circles. Variation
should be taken within C. We do not want to go into details, but the subgroup
of the third kind (see Section 3, [III]) plays an important role and we can

even appeal to the unitary representation theory of Lie groups (see [13]).

Case 5. We still consider the case of R2—parameter white noise x. Let D be a

domain with boundary C = 3D in C. Define

X(t.C) = J G(t,s:C)x(s)ds,
D

where G is the Green’'s function. Obviously, for C fixed we have

AtX(t.C) = x(t),
so X is now an "innovation’.

Then, letting t be fixed, we take the variation in C.

6X(t.C) = J 6G(t,s:C)x(s)ds + JG(t,s:C)x(s)én(s)ds.
D C

To discuss this variation, we can use the famous Hadamard equation:
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6G = G{u.,m;C) g; G(m,u;C)on(s)ds, m = m(s).

I\Dl._

T

J
C

Q)lQJ
=}

For further discussions see [14].
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